sexta-feira, 22 de abril de 2011


Por que é tão difícil calcular o PI?

A principal razão é que PI não é uma fração. Com efeito, se PI pudesse ser escrito como uma fração m / n, seu cálculo poderia
ou se resumir em buscar o valor de tais numeros inteiros m e n
ou explorar a periodicidade de sua representação decimal
( por exemplo, se fosse verdade que PI = 22 / 7 = 3.142857 142857 142857 ..., então nos bastaria achar o valor da parte inteira, 3, e o bloco 142857 que se repete indefinidamente )
O fato de que, por mais de 2000 anos, ninguém tivesse conseguido explorar nenhuma das duas possibilidades acima é exatamente o que sugeriu que PI não deva ser uma fração. A verificação rigorosa desse fato, ou seja a demonstração da irracionalidade de PI, veio só com Lambert, em 1 761.

Em verdade, por si só, a irracionalidade de PI não seria suficiente para determinar a dificuldade de seu cálculo; com efeito, existem irracionais de representação decimal previsível, e então fáceis de calcular, como é o caso de 3.10110111011110... . PI é difícil de calcular porque é um irracional imprevisível: sua representação decimal não mostra nenhuma previsibilidade, sendo que acredita-se que seus algarismos se distribuam aleatoriamente.
O cálculo de aproximações práticas do PI
Dada a ubiqüidade do PI, já comentada acima, é mais do que natural e importante que desejemos calcular seu valor. Contudo, dada sua irracionalidade imprevisível, jamais saberemos seu valor exato e isso nos leva a indagar: por que não nos contentarmos com aproximações PRATICAS do PI?
Nas lides diárias, dificilmente precisaremos conhecer uma aproximação melhor do que 3.14, enquanto que a vasta maioria dos calculos científicos não precisa saber mais do que 3.1416 e somente cálculos matemáticos muito exigentes, como o da obtenção de valores muito exatos das funções trigonométricas, precisaria saber mais de 10 dígitos do PI.
O mais antigo matemático que se preocupou com a obtenção de aproximações PRATICAS do PI foi Archimedes c. 200AC, em seu trabalho Sobre a medida do círculo. Usando o método dos polígonos, que descreveremos adiante, na proposição 3 desse trabalho ele mostra que:
a circunferência de qualquer círculo é maior do que três vezes seu diâmetro, e o excesso e' menor do que a sétima parte do diâmetro mas maior do que dez vezes sua septuagésima primeira parte
ou seja: 3 10/71 < PI < 3 1/7, o equivale a dizer, em frações decimais: 3.1408 < Pi < 3.1428.
O método dos polígonos envolve a obtenção de sucessivas delimitações da circunferência do círculo através do cálculo do perímetro de polígonos regulares inscritos e circunscritos, cujo número de lados vai sucessivamente dobrando. Consequentemente, o método é capaz, ao menos em princípio, de obter aproximações do valor do PI tão grandes quanto desejarmos. E' importante não esquecermos desse "em princípio" pois que Archimedes calculava com frações ordinárias e isso tornava seus cálculos extremamente penosos.
Archimedes partiu de quadrados e chegou até aos hexacontatetrágonos ( = polígonos regulares de 64 lados ) e aí parou pois que achou que esses produziam um aproximação PRATICA do PI.

Insistimos: ele parou aí porque considerava ter obtido uma aproximação prática e não porque não tinha condições de enfrentar o crescente volume de cálculos. Com efeito, Heron de Alexandria, in Metrika I, diz que Archimedes, em seu livro Plinthides kai kylindroi ( hoje, completamente perdido ), mostrou que: 211 875 / 67 441 < PI < 197 888 / 62 351
( em frações decimais, corresponde a: 3.1416349 < PI < 3.1737742 )
e, certamente, teria condições de fazer ainda melhor se assim desejasse.
Em verdade, o costume de preferir usar aproximações cómodas do PI, em lugar de aproximações mais exatas, não iniciou com Archimedes. Os mesopotâmicos e os romanos conheciam várias aproximações para o PI, embora preferissem usar PI = 3 ( é o que fazia, por exemplo, o famoso arquiteto romano Vitruvius ).
Logo após Archimedes, Apollonios, num outro trabalho lamentavelmente perdido e entitulado Okytokion, obteve a hoje clássica e universal aproximação PI = 3.1416 ( que provavelmente ele escreveu como 3927 / 1250 ), mas reconhecia que a mesma não tinha a praticidade da 22/7 ( ou seja 3 + 1/7 ) de Archimedes.

B. van der Waerden argumenta que o trabalho de Apollonios foi lentamente divulgado entre os matemáticos e astronomos indianos e chegou até a China onde Zu Chongzhi c. 450dC o teria aperfeiçoado para obter a estimativa 3.1415 926 < PI < 3.1415 927, que corresponde a calcular PI com sete dígitos corretos e que foi durante muitos séculos a mais exata aproximação conhecida para PI ( os livros de Zu Chongzhi foram perdidos, mas sabe-se que sua estimativa acima aparece no livro de Cálculo Infinitesimal, entitulado Zhui shu, que foi escrito por ele ou por seu filho, Zu Gengzhi, o qual foi um matemático ainda mais talentoso; o mais antigo relato que temos do cálculo do Pi por Zu Chongzhi aparece no comentário de Li Chunfeng do Jiu zhang suanshu, capítulo 1, problema 32 ).
Por que calcular muitos dígitos do PI ?
Quanto ao porquê de se procurar calcular PI com um número de decimais cada vez maior se, sabe-se, que tais aproximações não terão valor prático:
ATE A SEGUNDA GUERRA:
desafio, o prazer que sente todo verdadeiro matemático de enfrentar um problema difícil
fama, o desejo de entrar para a História da Matemática
Por exemplo, um dos mais famosos records no calculo do Pi foi o de William Shanks o qual, em 1 874, depois de 15 anos de cálculos, obteve os 707 primeiros dígitos do PI. Seu trabalho foi de força bruta, a base de lápis e papel, e mesmo com o surgimento de máquinas de calcular e os primeiros computadores, esse record só foi quebrado em 1 947, por D. Ferguson usando uma calculadora mecânica, ao obter 808 dígitos. Mas, o mais importante é observarmos que esse tipo de esforço louco ficou para o passado com o surgimento dos computadores eletrônicos digitais, durante a Segunda Guerra
ATUALMENTE:
alem dos itens acima:
demonstrar a potência de novos métodos de cálculo
os progressos algorítmicos no cálculo do PI foram muito mais sensacionais do que os das máquinas. Isso foi muito bem colocado por Neal Carothers:
"O cálculo dos 100 265 primeiros digitos do PI, em 1961, precisou de aproximadamente 105 000 operações aritméticas, enquanto que o algoritmo inventado pelos irmãos Borwein em 1984 precisou de apenas 112 operações aritméticas para obter os mesmos dígitos. Com meras 8 iterações desse algoritmo ( o que envolveu 56 operações aritméticas ) eles obtiveram em poucos segundos a aproximação que consumiu 15 anos da vida de Wm. Shanks".
estudar a estatística da distribuição dos dígitos do PI
conforme já mencionamos acima, um dos interesses em calcularmos grandes quantidades de dígitos do PI é podermos verificar se é ou não verdadeira a hipótese da distribuição aleatória de seus dígitos. Os cálculos já realizados tendem a confirmar essa conjectura. Por exemplo, examinando os 200 bilhões de dígitos iniciais do PI, Kanada e Takahashi obtiveram a seguinte distribuiçõo:
DÍGITO NUMERO de OCORRÊNCIAS

0 20000030841
1 19999914711
2 20000136978
3 20000069393
4 19999921691
5 19999917053
6 19999881515
7 19999967594
8 20000291044
9 19999869180
esses números de ocorrência estão bastante próximos dos esperados 20 000 000 000. Mais do que isso: os números de ocorrência tendem aos valores esperados com uma velocidade que está dentro do previsto pelo cálculo das probabilidades, conforme detalharemos adiante. 
demonstrar a potência de novos computadores:
uma maneira prática de exibirmos a potência de um novo computador é anunciando que o mesmo possibilitou a quebra do record no número de algarismos calculados para PI.

- feito por : Corinna Kelly, Rafaela, Luana, Yara, Vivia e Rebeca.

Nenhum comentário:

Postar um comentário